Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
2.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: covidwho-2246813

ABSTRACT

The worldwide spread of COVID-19 continues to impact our lives and has led to unprecedented damage to global health and the economy. This highlights the need for an efficient approach to rapidly develop therapeutics and prophylactics against SARS-CoV-2. We modified a single-domain antibody, SARS-CoV-2 VHH, to the surface of the liposomes. These immunoliposomes demonstrated a good neutralizing ability, but could also carry therapeutic compounds. Furthermore, we used the 2019-nCoV RBD-SD1 protein as an antigen with Lip/cGAMP as the adjuvant to immunize mice. Lip/cGAMP enhanced the immunity well. It was demonstrated that the combination of RBD-SD1 and Lip/cGAMP was an effective preventive vaccine. This work presented potent therapeutic anti-SARS-CoV-2 drugs and an effective vaccine to prevent the spread of COVID-19.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Single-Domain Antibodies , Animals , Mice , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/therapeutic use , COVID-19/therapy , Liposomes/immunology , SARS-CoV-2/immunology , Single-Domain Antibodies/therapeutic use
3.
Adv Immunol ; 154: 1-69, 2022.
Article in English | MEDLINE | ID: covidwho-2229796

ABSTRACT

Despite effective spike-based vaccines and monoclonal antibodies, the SARS-CoV-2 pandemic continues more than two and a half years post-onset. Relentless investigation has outlined a causative dynamic between host-derived antibodies and reciprocal viral subversion. Integration of this paradigm into the architecture of next generation antiviral strategies, predicated on a foundational understanding of the virology and immunology of SARS-CoV-2, will be critical for success. This review aims to serve as a primer on the immunity endowed by antibodies targeting SARS-CoV-2 spike protein through a structural perspective. We begin by introducing the structure and function of spike, polyclonal immunity to SARS-CoV-2 spike, and the emergence of major SARS-CoV-2 variants that evade immunity. The remainder of the article comprises an in-depth dissection of all major epitopes on SARS-CoV-2 spike in molecular detail, with emphasis on the origins, neutralizing potency, mechanisms of action, cross-reactivity, and variant resistance of representative monoclonal antibodies to each epitope.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Epitopes , Humans , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
4.
Cell Rep ; 41(3): 111512, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2060516

ABSTRACT

The SARS-CoV-2 Omicron variant evades most neutralizing vaccine-induced antibodies and is associated with lower antibody titers upon breakthrough infections than previous variants. However, the mechanism remains unclear. Here, we find using a geometric deep-learning model that Omicron's extensively mutated receptor binding site (RBS) features reduced antigenicity compared with previous variants. Mice immunization experiments with different recombinant receptor binding domain (RBD) variants confirm that the serological response to Omicron is drastically attenuated and less potent. Analyses of serum cross-reactivity and competitive ELISA reveal a reduction in antibody response across both variable and conserved RBD epitopes. Computational modeling confirms that the RBS has a potential for further antigenicity reduction while retaining efficient receptor binding. Finally, we find a similar trend of antigenicity reduction over decades for hCoV229E, a common cold coronavirus. Thus, our study explains the reduced antibody titers associated with Omicron infection and reveals a possible trajectory of future viral evolution.


Subject(s)
COVID-19 , Viral Vaccines , Mice , Animals , Spike Glycoprotein, Coronavirus , Neutralization Tests , Antibodies, Viral/chemistry , SARS-CoV-2 , Antibodies, Neutralizing/chemistry , Epitopes/chemistry
5.
Proc Natl Acad Sci U S A ; 119(31): e2205412119, 2022 08 02.
Article in English | MEDLINE | ID: covidwho-1947766

ABSTRACT

Camelid single-domain antibodies, also known as nanobodies, can be readily isolated from naïve libraries for specific targets but often bind too weakly to their targets to be immediately useful. Laboratory-based genetic engineering methods to enhance their affinity, termed maturation, can deliver useful reagents for different areas of biology and potentially medicine. Using the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and a naïve library, we generated closely related nanobodies with micromolar to nanomolar binding affinities. By analyzing the structure-activity relationship using X-ray crystallography, cryoelectron microscopy, and biophysical methods, we observed that higher conformational entropy losses in the formation of the spike protein-nanobody complex are associated with tighter binding. To investigate this, we generated structural ensembles of the different complexes from electron microscopy maps and correlated the conformational fluctuations with binding affinity. This insight guided the engineering of a nanobody with improved affinity for the spike protein.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Antibody Affinity , SARS-CoV-2 , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Antibody Affinity/genetics , Cryoelectron Microscopy , Entropy , Genetic Engineering , Humans , Protein Binding , Protein Domains , SARS-CoV-2/immunology , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/genetics , Spike Glycoprotein, Coronavirus/immunology
6.
Structure ; 30(9): 1233-1244.e7, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-1937225

ABSTRACT

Immunization with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike elicits diverse antibodies, but it is unclear if any of the antibodies can neutralize broadly against other beta-coronaviruses. Here, we report antibody WS6 from a mouse immunized with mRNA encoding the SARS-CoV-2 spike. WS6 bound diverse beta-coronavirus spikes and neutralized SARS-CoV-2 variants, SARS-CoV, and related sarbecoviruses. Epitope mapping revealed WS6 to target a region in the S2 subunit, which was conserved among SARS-CoV-2, Middle East respiratory syndrome (MERS)-CoV, and hCoV-OC43. The crystal structure at 2 Å resolution of WS6 revealed recognition to center on a conserved S2 helix, which was occluded in both pre- and post-fusion spike conformations. Structural and neutralization analyses indicated WS6 to neutralize by inhibiting fusion and post-viral attachment. Comparison of WS6 with other recently identified antibodies that broadly neutralize beta-coronaviruses indicated a stem-helical supersite-centered on hydrophobic residues Phe1148, Leu1152, Tyr1155, and Phe1156-to be a promising target for vaccine design.


Subject(s)
COVID-19 , Vaccines , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
7.
Bioinformatics ; 38(16): 4051-4052, 2022 Aug 10.
Article in English | MEDLINE | ID: covidwho-1908750

ABSTRACT

SUMMARY: We have developed a database, Ab-CoV, which contains manually curated experimental interaction profiles of 1780 coronavirus-related neutralizing antibodies. It contains more than 3200 datapoints on half maximal inhibitory concentration (IC50), half maximal effective concentration (EC50) and binding affinity (KD). Each data with experimentally known three-dimensional structures are complemented with predicted change in stability and affinity of all possible point mutations of interface residues. Ab-CoV also includes information on epitopes and paratopes, structural features of viral proteins, sequentially similar therapeutic antibodies and Collier de Perles plots. It has the feasibility for structure visualization and options to search, display and download the data. AVAILABILITY AND IMPLEMENTATION: Ab-CoV database is freely available at https://web.iitm.ac.in/bioinfo2/ab-cov/home. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Antibodies, Viral , Coronavirus , Antibodies, Viral/chemistry , Antibodies, Neutralizing/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Databases, Factual
8.
J Proteome Res ; 21(7): 1616-1627, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1873398

ABSTRACT

In this study, we used multiple enzyme digestions, coupled with higher-energy collisional dissociation (HCD) and electron-transfer/higher-energy collision dissociation (EThcD) fragmentation to develop a mass-spectrometric (MS) method for determining the complete protein sequence of monoclonal antibodies (mAbs). The method was refined on an mAb of a known sequence, a SARS-CoV-1 antireceptor binding domain (RBD) spike monoclonal antibody. The data were searched using Supernovo to generate a complete template-assisted de novo sequence for this and two SARS-CoV-2 mAbs of known sequences resulting in correct sequences for the variable regions and correct distinction of Ile and Leu residues. We then used the method on a set of 25 antihemagglutinin (HA) influenza antibodies of unknown sequences and determined high confidence sequences for >99% of the complementarity determining regions (CDRs). The heavy-chain and light-chain genes were cloned and transfected into cells for recombinant expression followed by affinity purification. The recombinant mAbs displayed binding curves matching the original mAbs with specificity to the HA influenza antigen. Our findings indicate that this methodology results in almost complete antibody sequence coverage with high confidence results for CDR regions on diverse mAb sequences.


Subject(s)
COVID-19 , Influenza, Human , Antibodies, Monoclonal/chemistry , Antibodies, Viral/chemistry , COVID-19/diagnosis , Humans , Mass Spectrometry , SARS-CoV-2/genetics
9.
Sci Rep ; 12(1): 8890, 2022 05 25.
Article in English | MEDLINE | ID: covidwho-1864769

ABSTRACT

We assessed the feasibility of a highly sensitive immunoassay method based on single molecule array (Simoa) technology to detect IgG and IgA antibodies against SARS-CoV-2 spike protein receptor binding domain (RBD) in saliva from individuals with natural or vaccine-induced COVID-19 immunity. The performance of the method was compared to a laboratory-developed SARS-CoV-2 RBD total antibody enzyme-linked immunosorbent assay (ELISA). Paired serum and saliva specimens were collected from individuals (n = 40) prior to and 2 weeks after receiving an initial prime COVID-19 vaccine dose (Pfizer/BioNTech BNT162b2 or Moderna mRNA-1273). Saliva was collected using a commercially available collection device (OraSure Inc.) and SARS-CoV-2 RBD IgG antibodies were measured by an indirect ELISA using concentrated saliva samples and a Simoa immunoassay using unconcentrated saliva samples. The IgG results were compared with paired serum specimens that were analyzed for total RBD antibodies using the ELISA method. The analytical sensitivity of the saliva-based Simoa immunoassay was five orders of magnitude higher than the ELISA assay: 0.24 pg/mL compared to 15 ng/mL. The diagnostic sensitivity of the saliva ELISA method was 90% (95% CI 76.3-97.2%) compared to 91.7% (95% CI 77.5-98.2%) for the Simoa immunoassay without total IgG-normalization and 100% (95% CI 90.3-100%) for the Simoa immunoassay after total IgG-normalization when compared to the serum ELISA assay. When analyzed using the SARS-CoV-2 RBD IgG antibody ELISA, the average relative increase in antibody index (AI) between the saliva of the post- and pre-vaccinated individuals was 8.7 (AIpost/pre). An average relative increase of 431 pg/mL was observed when the unconcentrated saliva specimens were analyzed using the Simoa immunoassay (SARS-CoV-2 RBD IgGpost/pre). These findings support the suitability of concentrated saliva specimens for the measurement of SARS-CoV-2 RBD IgG antibodies via ELISA, and unconcentrated saliva specimens for the measurement of SARS-CoV-2 RBD IgG and IgA using an ultrasensitive Simoa immunoassay.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunoglobulin G , SARS-CoV-2 , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19/diagnosis , COVID-19/immunology , COVID-19 Vaccines/immunology , Humans , Immunoglobulin A/chemistry , Immunoglobulin A/immunology , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
10.
mBio ; 13(3): e0358021, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1807332

ABSTRACT

Structural characterization of infection- and vaccination-elicited antibodies in complex with antigen provides insight into the evolutionary arms race between the host and the pathogen and informs rational vaccine immunogen design. We isolated a germ line-encoded monoclonal antibody (mAb) from plasmablasts activated upon mRNA vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and determined its structure in complex with the spike glycoprotein by electron cryomicroscopy (cryo-EM). We show that the mAb engages a previously uncharacterized neutralizing epitope on the spike N-terminal domain (NTD). The high-resolution structure reveals details of the intermolecular interactions and shows that the mAb inserts its heavy complementarity-determining region 3 (HCDR3) loop into a hydrophobic NTD cavity previously shown to bind a heme metabolite, biliverdin. We demonstrate direct competition with biliverdin and that, because of the conserved nature of the epitope, the mAb maintains binding to viral variants B.1.1.7 (alpha), B.1.351 (beta), B.1.617.2 (delta), and B.1.1.529 (omicron). Our study describes a novel conserved epitope on the NTD that is readily targeted by vaccine-induced antibody responses. IMPORTANCE We report the first structure of a vaccine-induced antibody to SARS-CoV-2 spike isolated from plasmablasts 7 days after vaccination. The genetic sequence of the antibody PVI.V6-14 suggests that it is completely unmutated, meaning that this type of B cell did not undergo somatic hypermutation or affinity maturation; this cell was likely already present in the donor and was activated by the vaccine. This is, to our knowledge, also the first structure of an unmutated antibody in complex with its cognate antigen. PVI.V6-14 binds a novel, conserved epitope on the N-terminal domain (NTD) and neutralizes the original viral strain. PVI.V6-14 also binds the newly emerged variants B.1.1.7 (alpha), B.1.351 (beta), B.1.617.2 (delta), and B.1.1.529 (omicron). Given that this antibody was likely already present in the donor prior to vaccination, we believe that this antibody class could potentially "keep up" with the new variants, should they continue to emerge, by undergoing somatic hypermutation and affinity maturation.


Subject(s)
COVID-19 Vaccines , COVID-19 , Epitopes , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Biliverdine , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Germ Cells/metabolism , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
11.
Signal Transduct Target Ther ; 7(1): 114, 2022 04 05.
Article in English | MEDLINE | ID: covidwho-1778593

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of novel coronavirus disease (COVID-19). The neutralizing monoclonal antibodies (mAbs) targeting the receptor-binding domain (RBD) of SARS-CoV-2 are among the most promising strategies to prevent and treat COVID-19. However, SARS-CoV-2 variants of concern (VOCs) profoundly reduced the efficacies of most of mAbs and vaccines approved for clinical use. Herein, we demonstrated mAb 35B5 efficiently neutralizes both wild-type (WT) SARS-CoV-2 and VOCs, including B.1.617.2 (delta) variant, in vitro and in vivo. Cryo-electron microscopy (cryo-EM) revealed that 35B5 neutralizes SARS-CoV-2 by targeting a unique epitope that avoids the prevailing mutation sites on RBD identified in circulating VOCs, providing the molecular basis for its pan-neutralizing efficacy. The 35B5-binding epitope could also be exploited for the rational design of a universal SARS-CoV-2 vaccine.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal/chemistry , Antibodies, Viral/chemistry , COVID-19 , Cryoelectron Microscopy , Humans , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
12.
Science ; 375(6579): 449-454, 2022 Jan 28.
Article in English | MEDLINE | ID: covidwho-1723472

ABSTRACT

Understanding broadly neutralizing sarbecovirus antibody responses is key to developing countermeasures against SARS-CoV-2 variants and future zoonotic sarbecoviruses. We describe the isolation and characterization of a human monoclonal antibody, designated S2K146, that broadly neutralizes viruses belonging to SARS-CoV- and SARS-CoV-2-related sarbecovirus clades which use ACE2 as an entry receptor. Structural and functional studies show that most of the virus residues that directly bind S2K146 are also involved in binding to ACE2. This allows the antibody to potently inhibit receptor attachment. S2K146 protects against SARS-CoV-2 Beta challenge in hamsters and viral passaging experiments reveal a high barrier for emergence of escape mutants, making it a good candidate for clinical development. The conserved ACE2-binding residues present a site of vulnerability that might be leveraged for developing vaccines eliciting broad sarbecovirus immunity.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , Betacoronavirus/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Antibody Affinity , Broadly Neutralizing Antibodies/chemistry , Broadly Neutralizing Antibodies/metabolism , Broadly Neutralizing Antibodies/therapeutic use , COVID-19/immunology , Cross Reactions , Cryoelectron Microscopy , Epitopes , Humans , Immune Evasion , Mesocricetus , Models, Molecular , Molecular Mimicry , Mutation , Protein Conformation , Protein Domains , Receptors, Coronavirus/chemistry , Receptors, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
13.
Nat Immunol ; 23(3): 423-430, 2022 03.
Article in English | MEDLINE | ID: covidwho-1713201

ABSTRACT

The global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic requires effective therapies against coronavirus disease 2019 (COVID-19), and neutralizing antibodies are a promising therapy. A noncompeting pair of human neutralizing antibodies (B38 and H4) blocking SARS-CoV-2 binding to its receptor, ACE2, have been described previously. Here, we develop bsAb15, a bispecific monoclonal antibody (bsAb) based on B38 and H4. bsAb15 has greater neutralizing efficiency than these parental antibodies, results in less selective pressure and retains neutralizing ability to most SARS-CoV-2 variants of concern (with more potent neutralizing activity against the Delta variant). We also selected for escape mutants of the two parental mAbs, a mAb cocktail and bsAb15, demonstrating that bsAb15 can efficiently neutralize all single-mAb escape mutants. Furthermore, prophylactic and therapeutic application of bsAb15 reduced the viral titer in infected nonhuman primates and human ACE2 transgenic mice. Therefore, this bsAb is a feasible and effective strategy to treat and prevent severe COVID-19.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/genetics , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , COVID-19/immunology , COVID-19/pathology , COVID-19/prevention & control , COVID-19/virology , Cloning, Molecular , Disease Models, Animal , Dose-Response Relationship, Immunologic , Epitopes , Humans , Macaca mulatta , Mice , Neutralization Tests , Protein Engineering/methods , Structure-Activity Relationship
14.
Front Immunol ; 12: 830527, 2021.
Article in English | MEDLINE | ID: covidwho-1686478

ABSTRACT

The new SARS-CoV-2 variant of concern "Omicron" was recently spotted in South Africa and spread quickly around the world due to its enhanced transmissibility. The variant became conspicuous as it harbors more than 30 mutations in the Spike protein with 15 mutations in the receptor-binding domain (RBD) alone, potentially dampening the potency of therapeutic antibodies and enhancing the ACE2 binding. More worrying, Omicron infections have been reported in vaccinees in South Africa and Hong Kong, and that post-vaccination sera poorly neutralize the new variant. Here, we investigated the binding strength of Omicron with ACE2 and monoclonal antibodies that are either approved by the FDA for COVID-19 therapy or undergoing phase III clinical trials. Computational mutagenesis and free energy perturbation could confirm that Omicron RBD binds ACE2 ~2.5 times stronger than prototype SARS-CoV-2. Notably, three substitutions, i.e., T478K, Q493K, and Q498R, significantly contribute to the binding energies and almost doubled the electrostatic potential (ELE) of the RBDOmic-ACE2 complex. Omicron also harbors E484A substitution instead of the E484K that helped neutralization escape of Beta, Gamma, and Mu variants. Together, T478K, Q493K, Q498R, and E484A substitutions contribute to a significant drop in the ELE between RBDOmic-mAbs, particularly in etesevimab, bamlanivimab, and CT-p59. AZD1061 showed a slight drop in ELE and sotrovimab that binds a conserved epitope on the RBD; therefore, it could be used as a cocktail therapy in Omicron-driven COVID-19. In conclusion, we suggest that the Spike mutations prudently devised by the virus facilitate the receptor binding, weakening the mAbs binding to escape the immune response.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal , Antibodies, Viral , COVID-19 Drug Treatment , COVID-19 , Molecular Dynamics Simulation , Mutation, Missense , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , COVID-19/genetics , COVID-19/immunology , Humans , Immune Evasion , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
15.
Science ; 375(6584): 1048-1053, 2022 03 04.
Article in English | MEDLINE | ID: covidwho-1673339

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has become the dominant infective strain. We report the structures of the Omicron spike trimer on its own and in complex with angiotensin-converting enzyme 2 (ACE2) or an anti-Omicron antibody. Most Omicron mutations are located on the surface of the spike protein and change binding epitopes to many current antibodies. In the ACE2-binding site, compensating mutations strengthen receptor binding domain (RBD) binding to ACE2. Both the RBD and the apo form of the Omicron spike trimer are thermodynamically unstable. An unusual RBD-RBD interaction in the ACE2-spike complex supports the open conformation and further reinforces ACE2 binding to the spike trimer. A broad-spectrum therapeutic antibody, JMB2002, which has completed a phase 1 clinical trial, maintains neutralizing activity against Omicron. JMB2002 binds to RBD differently from other characterized antibodies and inhibits ACE2 binding.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Binding Sites , Cryoelectron Microscopy , Epitopes , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Protein Domains , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Subunits/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Thermodynamics
16.
J Med Chem ; 65(4): 3563-3574, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1671476

ABSTRACT

Safe and effective vaccines are the best method to defeat worldwide SARS-CoV-2 and its circulating variants. The SARS-CoV-2 S protein and its subunits are the most attractive targets for the development of protein-based vaccines. In this study, we evaluated three lipophilic adjuvants, monophosphoryl lipid A (MPLA), Toll-like receptor (TLR) 1/2 ligand Pam3CSK4, and α-galactosylceramide (α-GalCer), in liposomal and nonliposomal vaccines. The immunological results showed that the MPLA-adjuvanted liposomal vaccine induced the strongest humoral and cellular immunity. Therefore, we further performed a systematic comparison of S-trimer, S-ECD, S1, and RBD as antigens in MPLA-adjuvanted liposomes and found that, although these four vaccines all induced robust specific antibody responses, only S-trimer, S1, and RBD liposomes, but not S-ECD, elicited potent neutralizing antibody responses. Moreover, RBD, S-trimer, and S1 liposomes effectively neutralized variants (B.1.1.7/alpha, B.1.351/beta, P.1/gamma, B.1.617.2/delta, and B.1.1.529/omicron). These results provide important information for the subunit vaccine design against SARS-CoV-2 and its variants.


Subject(s)
Antibodies, Viral/immunology , Lipid A/analogs & derivatives , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Subunit/immunology , Adjuvants, Immunologic , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Female , Lipid A/chemistry , Lipid A/immunology , Liposomes/immunology , Mice , Mice, Inbred BALB C , Molecular Structure , Vaccination , Vaccines, Subunit/chemistry
17.
Signal Transduct Target Ther ; 7(1): 26, 2022 01 27.
Article in English | MEDLINE | ID: covidwho-1655545

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the causative agent of the pandemic disease COVID-19, which is so far without efficacious treatment. The discovery of therapy reagents for treating COVID-19 are urgently needed, and the structures of the potential drug-target proteins in the viral life cycle are particularly important. SARS-CoV-2, a member of the Orthocoronavirinae subfamily containing the largest RNA genome, encodes 29 proteins including nonstructural, structural and accessory proteins which are involved in viral adsorption, entry and uncoating, nucleic acid replication and transcription, assembly and release, etc. These proteins individually act as a partner of the replication machinery or involved in forming the complexes with host cellular factors to participate in the essential physiological activities. This review summarizes the representative structures and typically potential therapy agents that target SARS-CoV-2 or some critical proteins for viral pathogenesis, providing insights into the mechanisms underlying viral infection, prevention of infection, and treatment. Indeed, these studies open the door for COVID therapies, leading to ways to prevent and treat COVID-19, especially, treatment of the disease caused by the viral variants are imperative.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Drug Design/trends , Drug Repositioning , SARS-CoV-2/drug effects , Adrenal Cortex Hormones/chemistry , Adrenal Cortex Hormones/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/therapeutic use , Antiviral Agents/chemistry , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/therapeutic use , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Humans , Models, Molecular , Nucleosides/chemistry , Nucleosides/therapeutic use , Protein Conformation , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , Virus Internalization/drug effects , Virus Release/drug effects , Virus Replication/drug effects
18.
Signal Transduct Target Ther ; 7(1): 23, 2022 01 25.
Article in English | MEDLINE | ID: covidwho-1655541
19.
Science ; 375(6583): 864-868, 2022 02 25.
Article in English | MEDLINE | ID: covidwho-1650843

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant of concern evades antibody-mediated immunity that comes from vaccination or infection with earlier variants due to accumulation of numerous spike mutations. To understand the Omicron antigenic shift, we determined cryo-electron microscopy and x-ray crystal structures of the spike protein and the receptor-binding domain bound to the broadly neutralizing sarbecovirus monoclonal antibody (mAb) S309 (the parent mAb of sotrovimab) and to the human ACE2 receptor. We provide a blueprint for understanding the marked reduction of binding of other therapeutic mAbs that leads to dampened neutralizing activity. Remodeling of interactions between the Omicron receptor-binding domain and human ACE2 likely explains the enhanced affinity for the host receptor relative to the ancestral virus.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Viral/chemistry , Immune Evasion , Receptors, Coronavirus/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Antigenic Drift and Shift , Broadly Neutralizing Antibodies/chemistry , Broadly Neutralizing Antibodies/immunology , Broadly Neutralizing Antibodies/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Humans , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Protein Domains/genetics , Protein Interaction Domains and Motifs/genetics , Receptors, Coronavirus/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
20.
Cell Rep ; 38(7): 110368, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1649284

ABSTRACT

Emerging evidence indicates that both neutralizing and Fc-mediated effector functions of antibodies contribute to protection against SARS-CoV-2. It is unclear whether Fc-effector functions alone can protect against SARS-CoV-2. Here, we isolated CV3-13, a non-neutralizing antibody, from a convalescent individual with potent Fc-mediated effector functions. The cryoelectron microscopy structure of CV3-13 in complex with the SARS-CoV-2 spike reveals that the antibody binds from a distinct angle of approach to an N-terminal domain (NTD) epitope that only partially overlaps with the NTD supersite recognized by neutralizing antibodies. CV3-13 does not alter the replication dynamics of SARS-CoV-2 in K18-hACE2 mice, but its Fc-enhanced version significantly delays virus spread, neuroinvasion, and death in prophylactic settings. Interestingly, the combination of Fc-enhanced non-neutralizing CV3-13 with Fc-compromised neutralizing CV3-25 completely protects mice from lethal SARS-CoV-2 infection. Altogether, our data demonstrate that efficient Fc-mediated effector functions can potently contribute to the in vivo efficacy of anti-SARS-CoV-2 antibodies.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , COVID-19/therapy , Animals , Antibodies, Viral/chemistry , Antibody-Dependent Cell Cytotoxicity , COVID-19/mortality , COVID-19/prevention & control , COVID-19/transmission , Disease Models, Animal , Epitopes , Humans , Immunization, Passive/mortality , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/immunology , Mice , Protein Binding , Protein Conformation , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL